The NJIT Department of Mathematics offers two types of courses: theoretical and practical. Graduates from this program will understand the concepts of advanced statistical techniques as well as modern day software that utilize these concepts.
Probability Distributions - Probability, conditional probability, random variables and distributions, independence, expectation, moment generating functions, useful parametric families of distributions, transformation of random variables, order statistics, sampling distributions under normality, the central limit theorem, convergence concepts and illustrative applications.
Approaches to Quantitative Analysis in the Life Sciences - Case studies of common data analytic methods used in the life sciences. The case studies are designed to help students who are interested in applications of statistical thinking to biological sciences appreciate the scope of quantitative methods, their underlying concepts, assumptions and limitations.
Clinical Trials Design and Analysis - Statistical methods and issues in the design of clinical trials and analysis of their data. Topic include clinical trial designs for phases 1-4, randomization principle and procedures, analysis of pharmacokinetic data for bioequivalence, multi-center trials, categorical data analysis, survival analysis, longitudinal data analysis, interim analysis, estimation of sample size and power, adjustment for multiplicity, evaluation of adverse events, and regulatory overview.
Statistical Inference - Data reduction principles: sufficiency and likelihood. Theory and methods of point estimation and hypothesis testing, interval estimation, nonparametric tests, introduction to linear models.
Sampling Theory - Role of sample surveys. Sampling from finite populations. Sampling designs, the Horowitz-Thompson estimator of the population mean. Different sampling methods, simple random sampling, stratified sampling, ratio and regression estimates, cluster sampling, systematic sampling.
Design and Analysis of Experiments - Statistically designed experiments and their importance in data analysis, industrial experiments. Role of randomization. Fixed and random effect models and ANOVA, block design, latin square design, factorial and fractional factorial designs and their analysis.